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We search for standard model single-top-quark production in the W -gluon fusion and W ? channels using 106 pb�1 of data
from p�p collisions at

p
s = 1:8 TeV collected with the Collider Detector at Fermilab. We set an upper limit at 95% C.L.

on the combined W -gluon fusion and W ? single-top cross section of 14 pb, roughly six times larger than the standard model
prediction. Separate 95% C.L. upper limits in the W -gluon fusion and W ? channels are also determined and are found to be
13 and 18 pb, respectively.

PACS numbers: 14.65.Ha, 12.15.Ji, 13.85.Rm

The observation of the top quark in p�p collisions at the
Fermilab Tevatron has relied on pair production through
the strong interaction, typically q�q ! t�t. A top quark
can also be produced singly, in association with a b quark,
through the electroweak interaction [1]. The two domi-
nant \single-top" processes are \Wg"(i.e. W -gluon fu-
sion, qg ! t�bq0) and \W ?" (q�q0 ! t�b). Within the con-
text of the standard model, a measurement of the rate of
these processes at a hadron collider allows a determina-
tion of the Cabibbo-Kobayashi-Maskawa matrix element
Vtb [2]. Assuming jVtbj = 1, the predicted cross sections
for Wg and W ? are 1.7 pb [3] and 0.7 pb [4] respec-
tively, compared to 5.1 pb for t�t pair production [5]. The
D� Collaboration has recently published 95% con�dence
level (C.L.) upper limits of 22 pb onWg and 17 pb onW ?

production [6]. In this Letter we report on two searches,
one for the two single-top processes combined, and the
other for each process separately.

The expected �nal state of a single-top event consists of
W -decay products plus two or more jets, including one b-
quark jet from the decay of the top quark. In W ? events,
we expect a second b-quark jet from the W ?t�b vertex. In
Wg events, we expect a jet originating from the recoiling
light quark and a second b-quark jet produced through
the splitting of the initial-state gluon. This b-quark jet
is produced at larger absolute value of pseudorapidity [7]
and lower transverse momentum than in W ? events [1].

Single-top processes are harder to observe than t�t pro-
duction because their cross section is smaller and their
�nal state, containing fewer jets, competes with a larger
W+multijet background from QCD. A priori we do not
expect sensitivity to the standard model cross section in
the presently available data. However, a number of new
physics processes could enhance the single-top produc-
tion rate, motivating a search [8, 9].

Our measurement uses 106 � 4 pb�1 of data from p�p
collisions at

p
s = 1:8 TeV collected with the Collider

Detector at Fermilab between 1992 and 1995 (\Run I").
The detector is described in detail elsewhere [10]. We
restrict our single-top search to events with evidence of a
leptonic W -decay: an isolated [11] electron (muon) can-
didate with ET (PT ) > 20 GeV (GeV/c) and missing
transverse energy [12] E=T > 20 GeV from the neutrino.

We remove events that were identi�ed in a previous CDF
analysis [13] as t�t dilepton candidates. Events with a sec-
ond, same-avor and opposite-charge lepton that forms
an invariant mass with the �rst lepton between 75 and
105 GeV/c2 are rejected as likely to have come from Z0

boson decays. Furthermore, to reject those dilepton t�t
or Z0 candidates where one lepton fails our electron or
muon identi�cation, we also remove events that contain
a track with PT > 15 GeV/c and charge opposite that
of the primary lepton, and such that the total PT of all
tracks in a cone of radius �R �

p
��2 +��2 = 0:4

around this track is less than 2 GeV/c [14]. Jets are
formed as clusters of calorimeter towers within cones of
�xed radius �R = 0:4. Events are required to have one,
two, or three jets with ET > 15 GeV and j�j < 2:0;
at least one jet must be identi�ed as likely to contain a
b quark (\b-tagged") using displaced-vertex information
from the silicon vertex detector (SVX) [14]. If a second
jet in the event is also b-tagged, either in the SVX or by
the presence of a soft lepton indicative of semileptonic
b decay, the event is labeled \double-tag", otherwise it
is labeled \single-tag". The above event selection cuts
are common to our combined and separate searches for
the two single-top processes. Additional cuts are applied
within each analysis.

We �rst describe our search for single-top production
in the Wg and W ? channels combined. The expected
signal signi�cance is improved by requiring the invariant
mass M`�b reconstructed from the lepton, neutrino, and
highest-ET b-tagged jet, to lie in a window around the top
quark mass, 140 < M`�b < 210 GeV/c2. The neutrino
momentum is obtained from the E=T and the constraint
that M`� = MW [15]. The variable M`�b discriminates
against both non-top and t�t backgrounds, in the latter
case because combinatorial errors in assigning partons to
�nal-state jets broaden the M`�b distribution compared
to single top.

We determine the eÆciency of our selection criteria
from events generated by the pythia Monte Carlo pro-
gram [16] and subjected to a CDF detector simulation.
The acceptance times branching ratio is (1:7� 0:3)% for
each of the two single-top processes. The largest contri-
butions to the acceptance uncertainties come from lepton
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Combined Search Separate Search
W + 1; 2; 3 jets W + 2 jets

Process Single-tag Double-tag
Wg 3:0� 0:6 1:4� 0:3 0:04 � 0:01
W ? 1:3� 0:2 0:55� 0:15 0:32 � 0:06
t�t 8:4� 2:7 1:4� 0:5 0:7� 0:2
non-top 54� 12 10� 2 1:6� 0:4
Total 67� 12 14� 2 2:7� 0:5
Observed 65 15 6

TABLE I: Expected numbers of signal and background events
passing all cuts in the W+jets data sample, compared with
observations. The uncertainties on the expected numbers of
single-top events do not include uncertainties on the theoret-
ical cross section calculations.

triggering and identi�cation (10%), and b-tagging (10%).
Combining these acceptances with the cross sections pre-
dicted by theory [3, 4] and the size of the CDF Run I
dataset, we expect a total signal yield of 4:3 events.

Expectations for signal and background rates are listed
in the second column of Table I. We estimate the t�t
background from a herwig Monte Carlo calculation [17]
followed by a detector simulation. Normalizing to the
theoretically-predicted cross section, �t�t = 5:1 � 0:9 pb
[5], we expect 8:4� 2:7 t�t events to survive our selection
criteria, where the uncertainty includes theoretical and
acceptance contributions.

The largest component of the non-t�t background in the
SVX-tagged W+jets sample is inclusive W production
in association with heavy-avor jets (e.g. p�p! Wg, fol-
lowed by g ! b�b). Additional sources include \mistags,"
in which a light-quark jet is erroneously identi�ed as
heavy avor, \non-W" (e.g. direct b�b production), and
smaller contributions from WW , WZ, and Z+heavy-
avor [14]. The mistag and non-W rates are estimated
from data, the W+heavy-avor rates from Monte Carlo
normalized to data, and the smaller sources such as dibo-
son production from Monte Carlo normalized to theory
predictions [14]. The total non-top background expecta-
tion is 54�12 events. The uncertainty on our background
includes the e�ect of varying the top mass by its uncer-
tainty of �5 GeV/c2.
To measure the combinedWg +W ? single-top produc-

tion cross section, we use a kinematic variable whose dis-
tribution is very similar for the two single-top processes
and is di�erent for background processes: the scalar sum
HT of E=T and the transverse energies of the lepton and
all jets in the event. We perform an unbinned maximum-
likelihood �t of the HT distribution from data to a lin-
ear superposition of the expected HT distributions from
single-top signal, t�t and non-top backgrounds. We model
the shape of theHT distribution for all sources of non-top
background with vecbos-generated [18] events contain-
ing aW plus two partons that we force to be a b�b pair. We
have checked that vecbos reproduces the HT and M`�b

FIG. 1: The HT distribution for data in the combined search,
compared with smoothed Monte Carlo predictions for signal
and backgrounds (second column in Table I). HT is the scalar
sum of E=T and the transverse energies of the lepton and all jets
in the event. The inset shows that the Monte Carlo modeling
of HT is very similar for both signal processes.

distributions for the b-tagged W + 1-jet data before the
M`�b cut, a sample in which the non-top backgrounds are
expected to dominate. In the search sample, the observed
HT distribution agrees with the spectrum derived from
Monte Carlo calculations when the latter are normalized
to the a priori predicted numbers of events (Figure 1).
We set an upper limit on the cross section using the

likelihood function:

L(�s; �t�t; �nt) = G1(�t�t)�G2(�nt)�Lshape(�s; �t�t; �nt);

where �s, �t�t and �nt are �t parameters representing,
respectively, factors by which the standard model cross
section predictions for single-top, t�t and non-top must
be multiplied to �t the data. The functions G1 and G2

are Gaussian densities constraining the background fac-
tors �t�t and �nt to unity, and Lshape represents the joint
probability density for observing the Nobs data events at
their respective values of HT :

Lshape(�s; �t�t; �nt) =
�Nobs

�t e��fit

Nobs!

�
NobsY

i=1

�sFs(HTi) + �t�tFt�t(HTi) + �ntFnt(HTi)

��t
:

In this expression, ��t � �s�s + �t�t�t�t + �nt�nt, where
�s, �t�t and �nt are the predicted numbers of events,
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Wg +W ? Wg W ?

Source Æn �S Æn �S Æn �S
Jet ET scale 0.01 0.25 0.01 0.02 0.01 0.06
Initial-state radiation 0.02 0.15 0.06 0.07 0.06 0.13
Final-state radiation 0.03 0.02 0.07 0.02 0.05 0.01
Parton distributions 0.04 0.02 0.01 0.03 0.01 0.02
Signal generator 0.02 0.25 0.08 0.03 0.07 0.12
Background model - 0.04 - 0.12 - 0.18
Top mass 0.04 0.01 0.01 0.12 0.00 0.35
Trigger & lepton id. 0.10 - 0.10 - 0.10 -
b-tag eÆciency 0.10 - 0.10 - 0.10 -
Luminosity 0.04 - 0.04 - 0.04 -
Total 0.16 0.39 0.19 0.19 0.18 0.44

TABLE II: Systematic uncertainties on the �t result for �s in
the combined search (Wg +W ?), and for �Wg and �W? in
the separate search (see text). The Æn columns list fractional
uncertainties due to signal normalization e�ects and the �S
columns absolute uncertainties due to e�ects on the shapes of
the �tted distributions.

and F (HT ) are smoothed HT distributions for signal and
background, normalized to unity. The maximum of L is
obtained for �s = 2:0� 1:8, where the uncertainty is sta-
tistical only and includes the e�ect of correlations with
the other �t parameters.

To extract Bayesian upper limits on the single-top
production rate, we construct a probability distribution
f(�s) by maximizing L(�s; �t�t; �nt) with respect to �t�t
and �nt for each value of �s, and multiplying the result
with a at prior distribution for �s. We then convolute
f(�s) with two Gaussian smearing functions. The �rst
one has width �sÆn, where Æn is the sum in quadrature
of all the normalization uncertainties listed in Table II.
The width of the second smearing Gaussian is the sum
in quadrature of all the systematic uncertainties relative
to the shape of the HT distribution (�S in Table II). Fi-
nally, the smeared distribution is integrated to �nd the
95% C.L. upper limit on single-top production. We �nd
this limit to be �:95s = 5:9, corresponding to a cross sec-
tion of 14 pb.

Because of signi�cant di�erences in the �nal-state kine-
matics of the two single-top processes, it is possible to
search for them separately. This is interesting, because
an exotic single-top production mechanism may con-
tribute to one and not the other, for example a heavyW 0

decaying to a t�b quark pair adding to the apparent W ?

rate [9]. For the separated search, we use events in the
W+2-jets sample only and consider two non-overlapping
subsamples. The �rst one consists of single-tag events
in which the reconstructed top mass lies in the window
145 < M`�b < 205 GeV/c2, and the second consists of
double-tag events. The expected compositions, calcu-
lated in the same way as for the combined analysis, are
shown in the last two columns of Table I: in the single-
tag sample, Wg is about 2.5 times larger than W ?; in

FIG. 2: Top: distribution of the product Q � � of the lep-
ton charge and the untagged jet pseudorapidity for single-tag
W+2-jets events. Bottom: distribution of the reconstructed
top mass for double-tag events. The data are compared with
expectations for signal and backgrounds (third and fourth
columns in Table I).

the double-tag sample,W ? is about 7.5 times larger than
Wg.

The Wg component in the single-tag sample can be
measured by considering that the light-quark jet in
Wg events is about twice as likely to be in the same
hemisphere as the outgoing (anti)proton beam when a
(anti)top quark is produced. Thus the product Q� � of
the primary lepton charge and the untagged jet pseudo-
rapidity has a strongly asymmetric distribution. In the
double-tag sample, the W ? component can be extracted
from the distribution ofM`�b. In this case, since both jets
are tagged, the b-jet with the largest � (��) is used in
forming M`�b for a t (�t) decay, as determined by the sign
of the primary lepton in the event, an assignment that is
expected to be correct 64% of the time. The Q � � and
M`�b distributions for the data are compared to expec-
tations for signal and background in Figure 2. For the
separate Wg and W ? searches, we use a herwig Monte
Carlo calculation to model our signals.

A binned maximum-likelihood �t is used to extract the
amounts of Wg and W ? present in the W+2-jets data.
The likelihood function has the following form:

L(�Wg ; �W? ; �t�t1; �t�t2; �nt1; �nt2) =

G1(�t�t1)�G2(�nt1)�L1(�Wg ; �W? ; �t�t1; �nt1)�
G3(�t�t2)�G4(�nt2)�L2(�Wg ; �W? ; �t�t2; �nt2);
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where the �t parameters are factors by which the pre-
dicted numbers of Wg (�Wg), W

? (�W?), single-tag t�t
(�t�t1), double-tag t�t (�t�t2), single-tag non-top (�nt1) and
double-tag non-top (�nt2) events must be multiplied to
�t the data. The Gi functions are Gaussian constraints
on the normalizations of the various backgrounds, L1 is
a binned Poisson likelihood for the Q� � distribution of
single-tag events, and L2 is a binned Poisson likelihood
for the M`�b distribution of double-tag events.
The result of the maximum-likelihood �t for the single-

top content of the data is �0:6+4:8
�4:0 Wg events and 7:6+5:9

�4:8

W ? events. The systematic uncertainties are listed in Ta-
ble II. We extract upper limits on the individual single-
top processes in the same way as for the combined search.
At the 95% C.L., we �nd upper limits of 13 and 18 pb
on single-top production in the Wg and W ? channels,
respectively. These two limits are correlated since they
are derived from the same likelihood function.
In summary, we conclude that electroweak t�b produc-

tion is out of reach in the Run I CDF data set. At
the 95% C.L., we set an upper limit on the combined
Wg + W ? single-top cross section of 14 pb. Separate
95% C.L. upper limits in the Wg and W ? channels are
13 and 18 pb, respectively.
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